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Recently, a novel concept for the computatiores$entiafeatures of the dynam-
ics of Hamiltonian systems (such as molecular dynamics) has been proposed. The
realization of this concept had been based on subdivision techniques applied to the
Frobenius—Perron operator for the dynamical system. The present paper suggests
an alternative but related concept that merges the conceptual advantages of the dy-
namical systems approach with the appropriate statistical physics framework. This
approach allows us to define the phrase “conformation” in terms of the dynamical
behavior of the molecular system and to characterize the dynamical stability of con-
formations. In a first step, the frequency of conformational changes is characterized
in statistical terms leading to the definition of some Markov operhtivat describes
the corresponding transition probabilities within the canonical ensemble. In a second
step, a discretization df via specific hybrid Monte Carlo techniques is shown to
lead to astochastiomatrix P. With these theoretical preparaions, an identification
algorithm for conformations (to be presented in a later paper) is applicable. It is
demonstrated that the discretizationTofan be restricted to few essential degrees of
freedom so that the combinatorial explosion of discretization boxes is prevented and
biomolecular systems can be attacked. Numerical results for the n-pentane molecule
and the triribonucleotide adenylyl¢&)cytidylyl(3'-5)cytidin are given and inter-
preted. © 1999 Academic Press

Key Words: conformation; conformational dynamics; hybrid Monte Carlo;
reweighting; essential degrees of freedom; transition probabilities; Markov operator;
transition operator.

1. INTRODUCTION

The classical microscopic description of molecular processes leads to a mathem:
model in terms of Hamiltonian differential equations. In principle, the discretization
such systems permits a simulation of the dynamics. However, direct simulation is ¢
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today restricted to relatively short time spans and to comparatively small discretiza
steps. Fortunately, most questions of chemical relevance just require the computati
averagesf physical observables, stable conformationr of conformational changes
In a conformation, théarge scale geometric structurd the molecule is understood to be
conserved, whereas on smaller scales the system may well rotate, oscillate, or fluctuate
computational characterization of a conformation via direct simulation thus often requ
inaccessibly long time spans.

Therefore, most approaches to the identification of conformations neglect the dynan
aspect: they are intereted only in finding clusters of molecular configurations with sigr
cantly differentlarge scale geometric structure and realize this by a straightforward statis
analysis of some appropriate set of sampling data, compare [3, 4]. Unlike these approa
we herein advocate wirectly attack the determination of conformatiaagjethemwith the
computation of their stability time spans and the rate of transitions between them. There
itis suggested to define the phrase “conformation” in terms of statistical mechaniestant
in terms of molecular geometry: @nformationis understood as sonamost invariant
subset in the position space—a notion which means that the fraction of systems in the m
ular ensemble, that leave this subset during some fixed observation time, is “small.”
algorithm to be presented allows us to decompose the position space into such dynam
defined conformational subsets and to compute the corresponding transition probabil
This approach distinctly differs from other approaches to the characterization of confor
tional transitions, e.g., via artificial acceleration of molecular processes (cf. [5-7]).

The key idea of the algorithmic realization of the new approach goes back to the wor
M. Dellnitz and co-workers on the approximation of almost invariant sets in dynamical
tems [8]. Therein, it was suggested to compute almost invariants subsets in phase spa
the discretized eigenvalue problem for the Frobenius—Perron operator, an operator v
describes the propagation of probability within the system. This “dynamical systems”
proach has been realized for molecular dynamics [1], but, even though the numerical re
were intriguing, this approach suffers both from an (yet) unclear theoretical justificat
and from the so-called “curse of dimension” of the proposed subdivision algorithm.

Herein, we will propose an alternative strategy that merges the conceptual advantac
the dynamical systems approach with the appropriate statistical physics framework. Th
step of its derivation is the replacement of the Frobenius—Perron operator by the statisti
correct spatial transition operator. The conceptual background of this replacement ar
algorithmic consequences are first outlined in Section 2 and subsequently discuss
more detail in Sections 3 and 4. The single steps of the resulting algorithm are illustrate
numerical results for the rather simple n-pentane molecule (Section 5). Its applicabilit
biologically relevant systems—in particular the circumvention of the curse of dimensiol
is exemplified at a small ribonucleotide.

2. OUTLINE OF THE METHOD

Before we go into the technical details of this paper, we want to give a “bird’s eye vie
of the new approach as a whole.

2.0.1. Theoretical Framework

As usual in molecular dynamics, we assume that we are dealing with an ensemb
molecular systems that is described by some (stationary) defisitythe phase spade
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of the molecular systems under consideration. Moreover, we suppose that the dynal
behavior of a single molecular system starting at tima€0 in statex, € I' can be described
by the formal solutior(t) = ®'x, of certain Hamiltonian equations of motion (compare
Section 3 for details). Then theansition probabilitybetween two subse®, S, C T is
given by

w(S, S, 1) = X5 (P7X) fo(x) dx (1)

1

fsl fo(x) dx /Sl
with xs denoting the characteristic function of the &t T, i.e., xs(X) =1 iff x e Sand
xs(X) =0 otherwise. We are interested @aimost invariantsubsets, i.e., in setSc T’
with large probabilities to stay within, which, for the time being, can be expressed
w(S, S, )~ 1. In [1], chemical conformations were understood as such almost invari
subsets in phase spafe However, they are usually understood to be objectzoisition
space Therefore, we herein characterizenformational subsetas spatial subsetsB of
positionsq € B. If we allow for arbitrary momenta, we are naturally led to thphase
space fiber

I'(B)={(q,p) eI',q e B} 2

associated witlB. Consequently, the spatial sub&is said to be a conformational sub-
set whenever the phase space fib€B) is almost invariant in the sense thatT"(B),
['(B), t)~1.

The crucial step towards the algorithmic identification of scehformational subsets
the derivation of some Markov operafbin Subsection 3.3, which describes girebability
of position fluctuationsvithin the canonical ensemble. Consequently, the Markov che
{Ok}k=0.1... generated byl allows us to simulate the spatial transitions in the ensemb!
The chain takes values in the position sp&c@nd has the following basic properties:
First, its stationary probability to be within a spatial subBet 2, denoted by (B),
is given via the ensemble densify, i.e., 7(B)= fF(B) fo(x) dx, and, second, its one-
step transition probabilitieB (q; € C | gp € B) between subset, C C 2 are given by the
transition probabilties within the ensemble between the corresponding spatial fibers

P e Clqgo e B)
7(B)

= w((B), ['(C), 7). ()

This illustrates that the generafbrof the chain is the statistically correspatial transition
operatorof the ensemble. Following [8, 1], our algorithmic strategy is to identify confo
mational subsets via eigenmodes of the dominant eigenvalueg¢sgfe Subsection 3.3).

2.0.2. Algorithmic Realization

In order to compute these eigenmodes (and thus the conformations), we will hav
discretize the corresponding eigenvalue problem. We realize this by means of a Gals
procedure (Subsection 4.1) based on a box covaBing. ., B, C  of the position space.
This discretization step results in a reversible stochastic transition matrix whose entrie
just the transition probabilities (I"(By), I'(By), ) between the discretization boxes.

Due to (3), we may compute these entries of the transition matrix via simulation of
Markov chain associated with. The approximation of this chain naturally leads to standal
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hybrid Monte Carlo (HMC) sampling techniques (Subsection 4.2). By construction,
transition probabilties of the resulting HMC chain are similar to that of the original ch:
whose probability to leave some conformational subset is extremely small. Conseque
the samerapping problemoccurs for the HMC chain, which leads to the rather unseg
isfactory convergence properties of HMC when applied to biomolecules, as reporte
the literature [9]. In order to circumvent this problem, a novel approach combining HN
with the reweighting technique [10, 11] has been presented in [12]. This HMC varic
called adaptive temperature hybrid Monte Carlo (ATHMC), facilitates the transitions
repeatedly switching to an increased temperature in order to cross crucial energy |
ers followed by a correction of this momentary overheating via reweighting to the |
semble of the original temperature (cf. Subsection 4.2). Application of this techni
allows us to compute the entriegI" (By), ['(B), t) of the transition matrix, even for larger
molecules.

However, even if we can compute arbitrary transition probabilities, any discretizat
of the transition operatol will suffer from the “curse of dimension” whenever it is
based on the decomposition of all of the hundreds or thousands of degrees of free
in a typical biomolecular system. Fortunately, chemical observations reveal that—evel
larger biomlecules—only relatively fesonformationabr essential degrees of freedare
needed to describe the conformational transitions [13]. Different techniques are avalil
for identifying these essential degrees of freedom based on reliable simulation data
Subsection 4.3). We herein suggest applying these techniques to an ATHMC samy.
Having completed this identification process, we can avoid discretization of by far the n
degrees of freedom of the molecular system under investigation; only the low-dimensi
essential configuration space has to be discretized which leads to a tremendous red
of dimension.

Once the entries of the corresponding transition matrix have been computed base
ATHMC sampling data, we have to determine the eigenvectors of its dominant eigenval
That is, only an approximation of the dominant eigenelements of the transition matri
required,notits full diagonalization. Thus, actual evaluation of the required eigenvectt
is efficiently possible using subspace oriented iterative techniques, even if the numb
discretization boxes may be about 100,000 or larger (depending on the spectral prop
of the matrix, see Subsection 4.3). The final step, the determination of the conformati
subsets from these eigenvectors, is realized by means of a specific identification algo
presented in [2].

The whole algorithmic scheme of the direct conformational dynamics approach is ill
trated in Fig. 1.

Reweighted __ Idcnt.iﬁcati(lm of Evaluation of  |_
N ATHMC essential variables | ™| ransition matrix
A/
Conformational subsets Identification | Subspace oriented
& transition probabilities of conformations eigenvalue solver

FIG. 1. Basic scheme of the algorithm. Gray boxes are presented in [2].
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3. CONFORMATIONS AS ALMOST INVARIANT SETS

In classical MD (cf. textbook [14]) a molecule is modeled by a Hamiltonian function

1
H(a, p)=§pTM‘1p+V(q), 4

whereq and p are the corresponding positions and momenta of the atibhike diagonal
mass matrix, an/ a differentiable potential. The Hamiltoniat is defined on the phase
spacel” c RN, The corresponding canonical equations of motion

g=M"1p, p=-—gradV (5)

describe the dynamics of the molecule. The formal solution of (5) with initial state
(9(0), p(0)) is given byx(t) = (q(t), p(t)) = d'xg, whered! denotes the flow.

On the smallest time scales (say, 1 femtosecond) the dynamics described by the
®! consists of fast oscillations around equilibrium positions (bond length or bond an
vibrations). In contrast to these fast fluctuations the phrase “conformations” describes n
stable global configurations of the molecugonformational changeare therefore rare
events, which will show up only in long term simulations of the dynamics (e.g., on a ha
or millisecond time scale). From a mathematical point of view, conformations are spe
“almost invariant” subsets in position spateariant setorrespond to infinite durations
of stay (or relaxation times). If the conformations wéameariant setsof the flow of the
Hamiltonian system, then transitions between different conformations woultdossible
Since such transitions exist but aere, we must understand every conformation to be a
almost invariantsubset of the Hamiltonian flow.

3.1. Dynamical Systems Approach

In what follows, the concept of almost invariant sets and their algorithmic identificatic
which has been studied for rather general but low-dimensional dynamical systems,
shortly be reviewed.

Some subseB C I is calledinvariantunder the flowd! iff, for all t > 0,

(S =S and thus o' =S

We now aim at a precise mathematical understanding of “almost invariance” of a su
Sc . Therefore, we have to introduce a measure for describing the fregtiah® (S) that
remains inS under the action of the flow™. The degree of invariance &with respect to
a certain probability measuyeis given by the corresponding conditional probability

nESNO(S) _

En=""9 =

1, S u-measurable (6)

In particular, if Sis invariant, thens(S, 7) =1 independent of the choice of. We are
interested in subsetS with §(S, t) sufficiently close toS =1, to be denoted aalmost
invariant subsets. The so-defined notion of almost invariance obviously depends on
choice of the time span. However, we will see in Subsection 3.3, that (at least for syster
of chemical interest) the influence ofon the identification of almost invariant subsets ca
be neglected.
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Upon fixing a suitable time span we have reduced the continuous dynamical syste
(5) to a discrete dynamical system

Xk4+1 = CDTXk, k = O, 1, 2, e (7)

The long term behavior of this system is described by so-catteariant measuresa
probability measure is invariant, iff u(®*(S)) = u(S) for all measurable subse®&c I'.
Thus, ©(S) may be interpreted as the probability of finding the molecular syste@® in
at an arbitrary instant=Kkr, k € Z. Thus, invariant measures are the natural probabili
measures to be used in (6) for quantifying almost invariance. Consequently, uniquene
the invariant measure is a desirable property since it guarantees that almost invariar
well-defined.

The numerical computation of invariant measures is equivalent to the solution of
eigenvalue problenfor the so-calledrrobenius—Perron operator Ulnvariant measures
correspond to eigenmodes Wffor its largest eigenvalug = 1. It has been discovered in
[8] that for many discrete dynamical systems

almost invariant setare related to eigenmodes of the
Frobenius—Perron operator for eigenvalies 1 insidethe (8)
unit circle (|A| < 1).

One strategy for identification of almost invariant sets is to discretize the Frobenius—Pe
operator in order to approximate these eigenvaluedl. In a sequence of articles (cf. [15,
8]), M. Dellnitz and co-workers established numerical techniques realizing this strat
for different non-Hamiltonian systems. The Frobenius—Perron operator is discretizec
a multi-level subdivision process, which generates a box covering of the system’s relz
global attractor. Recently, this approach has been extended to Hamiltonian systems
intriguing numerical results [1].

This “dynamical systems approach,” however, has two crucial difficulties. First, t
approach turns out to be useful only for small molecular systems, since it suffersdrom
binatorial explosiorof the necessary number of discretization boxes already for modet
size molecules. Second, the approach has some deep-lying conceptual problems tr
related to the properties of the Frobenius—Perron operator for Hamiltonian systems. T
derstand these problems, one has to discuss the physical meaning of the Frobenius—
operatolJ in the context of statistical mechanics. This will help us to draw the appropri
consequences for the molecular ensembles to be considered herein and, finally, to
form the key ideas of the dynamical systems approach into an algorithmic concept b
applicable to the identification of biomolecular conformations.

3.2. Reformulation in Terms of Statistical Mechanics

In order to understand the physical meaning of the Frobenius—Perron operatol
Hamiltonian systems, we recall the basic equations of motion in statistical mechat
The evolution of astatistical ensemblef identically prepared systems is described b
a time dependent probability densify= f (x, t) in phase space. The propagation of th
probability density is described by the Liouville equation for the Hamiltorkign

Wf=iLf=(H, fl, ft=0) =", ©)
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where {-, -} denotes the well-known Poisson bracket abe- —i{H, -} the associated
Liouville operator (cf. [16]). The densityy describes the initial probability distribution
in the statistical ensemble, i.dg(x) is interpreted as the relative frequency in the enser
ble of systems in stateat timet = 0. Therefore, the density must definedn accordance
with theinitial experimental preparatioof the ensembile.

On one hand, the solution of (9) is given by the flow as

f(x,t) = fo(d7X);

on the other hand, it can be denoted using the semi-group generatedryhe Hilbert
spacel?(I),

f(,t) =expitL) fo. (20)

3.2.1. Frobenius—Perron Operator in Statistical Mechanics

For the Hamiltonian system (7), the Frobenius—Perron opetatof the dynamical
systems approach is identical with the statistical propagator in (10), that is,

U =expizl), yieldingUf = f o @77, (112)

actingonL2(I") ={f : .| f(x)|?dx < oo}, for details see [17, 18]. Sina&is self-adjoint
[19], U is unitary inL2(I"). Thus, the spectrum df in L?(I") lies on the unit circle and
there simply are no eigenvalugs< 1 allowing for the identification of almost invariant
sets. (The same is true In'(I"), see [17, Proposition 3.1.2; 18].)

Moreover, all stationary solutions of the Liouville equations are invariant densities
U, i.e., eigenvectors for the eigenvalue- 1. In particular, forarbitrary smooth functions
F:R— [0, 1], the associated densitiflgx) = F(H (x)) are stationary solutions of the
Liouville equation. Consequently, there are infinitely many invariant densities (and ass
ated invariant measures) for.

As a consequence of our considerations, one has to replace the Frobenius—Perron of
by an alternative stochastic operator that represents the restriction to the stationary ens
density under consideration and—since the conformations are pspaljyal objects—
describes spatial fluctuation within this ensemble. After introducing the appropriate nota
in the subsequent paragraph, we will see in Subsection 3.3 that this can in fact be rea

3.2.2. Spatial Fluctuations in the Canonical Ensemble

Most experiments on molecular systems are performed under the conditions of con
temperature and volume. The corresponding stationary density isathenical density
associated with the Hamiltoniat

fo(x) = %exp(—ﬁH (X)), with Z = / exp(—BH (X)) dx,
r

whereg =1/kg7, with 7 being the system’s temperatuifeandkg Boltzmann’s constant.
SinceH was assumed to be separabigis a product

1 1
fo() = = exp(—g p'M 1p) == eXp—BV (@), (12)
P q

=P(p) =9(q)
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where we normaliz and Q such that

/wap=/Qqu=L

In the following we always consider theanonical ensembjé.e., fo will always be given
by (12).

We are interested in particular almost invariant subsets of the canonical ensgmbl
Thus, the probability measugein the basic definition (6) of almost invariance is now giver
by the densityfy. Then, the definition (1) of the statistical transition probabilities allows
to rewrite the degreé(S, ) of invariance of some subs&c I' asé(S, 1) =w(S, S, 7).
Thus,ScTI' is almost invariant iw(S, S, t) ~ 1.

As already discussed above, conformations are related to subsetspafsitien space
Q c R3N (the spatial component of the phase spaee2 x R3N): conformational subsets
are subset8 c Q such that the corresponding phase space fitj&) is almost invariant,
i.e., such that

w((B), I'(B), 1) ~ 1,
where, as a consequence of (1) and (12),
1
w@@%WQﬂﬁ=/{/ @%,>m>d}q>d,
0@/l e X8 (6107 (0, P)P(p)dp Qe dq
with &; denoting the projection onto the position component, §€q, p) =q. From now

on, we are interested only in subsets of this form and denote the probability to be wi
B cCQ by

mmz/gmmz/ o) dx. (13)
B r(B)

3.3. Definition of the Spatial Transition Operator

As will turn out subsequently, an appropriate choice for a stochastic operatosstie
transition operator Tdefined via momentum weighting due to

TuQ) = / u(&1277(q, p))P(p)dp, (14)
whereu=u(q) is a functionu: Q2 — C andu(&;®-7(q, p)) meansu(dy) if (g, p1) =
®~7(q, p) due to the definition of;. In comparison with (11), one may interpretas the
restriction of the Frobenius—Perron operator to the position coordinates via an appror

averaging with respect to the canonical momentum distribution.
We considefT as an operator on the weighted spaces

%GD={WQ—%lemWQmNQ<w} p=12
Obviously, LZQ(Q) is a Hilbert space with scalar product

(u, v>g=/9u*(q)v(q)Q(q)dq
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and induced nornnu||2g = (u, Uyg. With respect to these spaces, the important properti
of T are the following (cf. [18]):

(1) T is a Markov operator oh }(£2).

(2) T is bounded{|Tullg <|ulle.

3) In LZQ(Q), T is selfadjoint since®” is reversible Hence, the spectrum(T) of
T is real-valued and bounded(T) c [—1, 1].

(4) For subset8, C ¢ © we find

(Txe, xclo = / : xre) (P7x) fo(x) dx, (15)
r(e)

showing thafl represents the transition probabilities of our interest.
(5) T is asymptotically stable in.1(), i.e., the eigenvalug =1 is dominant and
simple inL1(Q) andL?() (this holds for all systems of chemical interest).

The last property shows th@thas a unique invariant density so that “almost invariance”
well-defined via (6). ThusT has all necessary properties to replace the Frobenius—Per
operator such that, in analogy to (8), we may identify the conformational subsets via
eigenmodes of for eigenvalues near=1.

In contrastto the properties (1)—(4) which generally hold for Hamiltonian systems, the
property is only valid for systems satisfying a certain mixing condition: for every positif
g € Q, the mapyq(p) =£197(q, p) must have sufficiently strong mixing properties (eyy.,
must not map all possible momerdo a single position)’ € 2). This mixing condition is
satisfied, e.g., for all molecular systems with periodic boundary condition [18]. It, howe\
excludes certain “degenerate” systems such as strictly harmonic systems with peri
(whereyy (p) = q for every momentunp).

Moreover, for systems satisfying the above condition for every0, the dominant
eigenmodes of —and, thus, the almost invariant sets—are rather insensitive to change
7 [18]. In contrast to this insensitivity, the transition probabilities do crucially depend
7. The time span appears to be a temperature-like parameter (increasesffact a kind
of melting process of the fluctuation-induced mixing in position space, compare [18]
details).

For the systems of interest, the cluster of eigenvalues hest is separated from the
remaining part of the spectrusn(T) by some significant spectral gap (cf. [18, Sect. 3.2]]
o(T) can be decomposed into this so-called Perron clustee 1, Ao, ..., Ak} of iso-
lated eigenvaluesy < --- <X, <1, and the remainderg(T) C [—«, «] with some value
0 <k < Ak such that (in most cases of interest) the gap Ak — « is significantly larger
than the distances between the eigenvalues within the Perron cluster (for example
Section 5).

4. TRANSITION PROBABILITIES AND ASSOCIATED MARKQOV CHAINS

Since the transition operatdr is a Markov operator in.1(2) satisfyingT xo = xq. it
generates a Markov chajok }k—o.1.... With values in the position spa&e via the transition
function

P(oq1€Blgo =0q) = P(q, B) = T xs(0), for all measurabl® c Q.
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This chain can be realized via théscrete stochastic dynamical systgif]

qk+1 = EquT(qka pk)5 k = O’ 17 DR} (16)

with px being randomly chosen from the momentum distribufiin each step. For systems
of chemical interest, the chain has been shown to be irreducible and aperiodic with un
stationary density) [18]. Moreover, any simulation of the chain via (16) would allow u:
to compute the desired transition probabilities in the ensemble, since the definition c
transition function implies

P(gk € Clao € B) = (xc, T*xs)o, (17)

which in particular yields (3) for the one-step transition probabilities.

Thus, the replacement of the Frobenius—Perron opethtiyrthe spatial transition oper-
atorT induces an associated change in the dynamical description: the discrete determi
dynamical system (7) associated withis replaced by the stochastically perturbed dynan
ical system (16) associated wilh In other words, the restriction tgpatial fluctuations
via averaging with respect to the canonical momentum distribution may be interpreted
specificcoarse grainingof the dynamical description.

In order to compute the conformational subsets via the eigenvalue problem foe
will now proceed to the (spatial) discretizationdf We will see that this finally also leads
to a certain discretization of the Markov chdi}k—o,1,.. generated by .

4.1. Spatial Discretization

If we restrict our attention to the weighted Hilbert spa@(sz), we can (as in [8, 1])
naturally derive a special Galerkin procedure to discretize the eigenvalue problemu.
Let By, ..., B, C 2 be a covering of2 so thatBy N B = for k#| andU;_, B« = €.
Then, the setB(Bx), k=1, ..., n, are a covering aff'. Our finite dimensional ansatz space
Vo =sparixi, ..., xn} iS Spanned by the associated characteristic functiQasxs, . The
Galerkin projection, : L () — V, of ue L(R) is defined by

n
1
[Mhu = ; m()(k, U)o Xk-
The resulting discretized transition operafdsT I, induces the approximate eigenvalue
problemIT,TIT,u=Au in V,. Let A be one of the corresponding eigenvalues and let tl
related eigenvector be= >";_; axxk- Then, the discretized eigenvalue problem has tf
form
n

Z(T)(k, X1 oo = Am(By)ak, vk=1,...,n.
I=1

After division by (By) (known to be positive), we end up with the convenient form
Poa = A witha = (ay, ..., an),

where in fact the entries of thex n matrix P are given by the spatial transition probabilities
from By to B,

(Txk> x1)0

= B

= w(l(Bw), I'(B), 7). (18)
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This result finally confirms that (14) was the correct choice of a transition operator in
statistical context.

SinceT is a Markov operator, its Galerkin discretizati®ris a (row) stochastic matrix,
i.e.,Pq>0 andZ,”=1 Pq=1forallk=1, ..., n (for details about stochastic matrices se
[20]). Hence, all its eigenvalues satisfy |1| < 1. Moreover, we have the following four
important properties (cf. [18]):

(1) The row vectorr = (1, ..., mn), mx = (Bk) denotes the discretized invariant
density. Simple calculus reveals thats a left eigenvector to the eigenvalue- 1, i.e., that
TP=m.

(2) Pisirreducible and aperiodicwhich implies that the eigenvalue= 1 issimple
Hence, the discretized invariant densitys theuniquestationary distribution oP.

(3) P isreversible sinceT is self-adjoint. In other word<R fulfills the condition of
detailed balance

JTkPk|=7T|P]k, Vk,|€{1,...,ﬂ}.

Therefore, all eigenvalues & are real-valueds (P) Cc[—1, 1].

(4) Whenever the discretization is fine enough, the dominant eigenvaluésacé
good approximations of the dominant eigenvalue3 ofn this casepP also has a Perron
cluster of eigenvalues near= 1 which is separated from the remainder of the spectrum |
a significant gap (cf. Section 3, last paragraph).

This means that, for arbitrary coverings, .. ., By C @, the discretization matrice® are
inheriting the most important properties of the operator

As any stochastic matrix, our discretization matfxalso defines aliscrete Markov
chain i.e., the stochastic (random) walk of a single system through phase space.
associated statistical interpretation is as follows: If at instgne& the system is irBy,
the probability of finding the system iB, at instancej + 1 is Py =w(I'(By), I'(B)), 7).
With j — oo the system visits all subseBg with the probabilityry, the value given by the
stationary distribution oP.

According to our definition of “almost invariance,” we are interested in such unio
B = Uke| B of our “discretization boxesBy, for which the probabilityw (I'(B), I'(B), )
to stay within is sufficiently close th= 1. In other words, we are looking for a nontrivial in-
dexsetl C {1, ..., n}sothatthe discrete system almost certainly stays wBhin Uy, By
within one single step — j + 1. As derived in[2], such index sets (“almostinvariant aggre
gates”) can be identified via the right eigenvector®dbr eigenvalues close to= 1. Once
a conformational subs@& has been identified, the probabiliyB, ) = w(I'(B), I'(B), )
to stay within Bcan easily be computed by virtue of the relation

! > mPa. (19)

§(B, 1) =
Zkel Tk Klel

4.2. Realization via Hybrid Monte Carlo (HMC)

Up to now, the remaining question is how to compute the ma&rfer given boxeBy.
According to (18) we have to determine the transition probabilities betweeBythEhis
task includes two subproblems:
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(1) “sampling of the canonical density.” That is, we have to generate a sequenc
statesS={xx, k=1, ..., M} C T that is approximately distributed according f®

(2) Approximation of the transition probabilities. We will see below that this reduc
to counting all suclx; € Sfor which x; € I'(By) and®*x; € I'(By). For checking the last
condition, sufficient approximatior§ ~ ®*x; of all M subtrajectories starting fro®are
needed.

The typical approach to sampling the canonical density is via Monte Carlo (MC) techniq
The literature on this topic is extremely rich and varied [21, 22]. The reader might no
that we need not give particular merits to any special MC variant simesconverging MC
method would allow us to realize the subproblem 1 from above. In addition, one may
apply MD-based techniques, e.g., constant temperature sampling of the canonical de
[23, 24].

Despite this, we suggest applying a certajbrid Monte CarlqdHMC) technique, merely
because it seems to be particularly appropriate for linking the above mentioned subprok
(1) and (2). In order to explain this advantage and the basic idea of HMC let us shortly re
that the transition probabilities may be computed via the Markov chain (16) associated
our transition operatof . Iterations of (16) realize sequendg} which are (asymptoti-
cally) distributed due t@® and allow us to determine the relative frequency of transitior
Ok € Bj — ak41 € By for arbitrary box numberg andl. The convergence guarantees the
the relative frequencies approximate the desired transition probabilities in the sense t

#(Ok € Bj AGky1 € By)
#(gk € Bj)

— w(T'(B)), I'(B), 7). (20)

Thus, we have to ask whether one can realize the iteration (16) by replacing the exdet flo
by an appropriate approximation. For answering this questiod 4¢tdenote a reversible
and volume-preserving one-step discretization of the fib\yi.e., of the Hamiltonian
equations (5). The reader, who is not familiar with this notation, may think%fas de-
noting the well-known Verlet discretization [25, 14] with stepsixe The approximation
of ®* via m steps of this discretization yields the discrete flow

g= (w/mm me N,

with m being large enough such that the stepsizen is adequate. Unfortunately, the
underlying stationary densityy is not invariant under the action af, sinceg does not
preserve the energy of the system. (There is no discretization which is symplectic
reversible and simultaneously preserves energy exactly [26]. We may reduce the er
error, produced by, to an arbitrary small value by increasing but this would lead to a
totally inefficient computation scheme.)

4.2.1 Standard Hybrid Monte Carlo (HMC)

Hence, we have to look for a Markov chain, which allows us to sa@pldnile containing
only g and not the flow itself. This requirement naturally leads us to so-called “hybri
Monte Carlo variants which to our knowledge have first been introduced in the late 1¢
(cf. [27]) and have in MD mostly been used for condensed matter and polymer-like syst
(cf. [28-30]). HMC generates a sequerige) C 2 in position space. The HMC update ster
0; — 0j+1 is based on the typical Metropolis Monte Carlo proposal/acceptance strate
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The first part of the HMC proposal step is to choose momentandomly fromP, gain-
ing the statex; = (q;, pj). As the second part, compute the proposal stateia a short
approximate subtrajectory of the underlying Hamiltonian system, i.e., chigose(x;).
Then, apply the standard Metropolis MC acceptance steg tndX;, let the accepted
state bex;j;1, and finally setj.+1 =£1Xj+1. In other words, HMC realizes an iteration of
the Markov chain

if r <a(x),

en = i@, Py withao,n = {300 0L e
settinga (X) = min{1, exp(—BAE(X))}, (21)

with AE(X) = H(g(x)) — H(X),

with p; independently chosen randomly frdfnandr; randomly from the equidistribution
in [0, 1]. In this form, HMC has to be understood aguae position samplingf the spatial
canonical distributior® such that the resulting Markov chdiag; } allows us to approximate
the expectation values of approprigtgatial observablesd : 2 — R in the sense that we
have asymptotically [18, 31, 32]

<CM12 (22)

1 M
o A@) - [ A@o@dg
i=1 :

with a constan€ not explicitly depending on digi") = 6N. Thus, we are able to approx-
imate the desired transition probabilitiesI" (By), I'(By), t) “simply” by counting accord-
ing to (20). The main advantage of HMC in this context is obvious: we need approximati
of ®*x; and get them “for free” if we usmAt = ¢ with sufficiently smallAt in the HMC
iteration (21).

Theoretically, the transition matriR is reversible. In order to reproduce this propert
for its approximation, we may simply count each transition frBgito By as a transition
B, — By, too (thus exploiting the reversibility of the discretizatigri!).

4.2.2. Reweighted Hybrid Monte Carlo (ATHMC)

It is well known that MC simulations for ensemble averages may suffer from possi
“critical slowing down” [33]. This phenomenon occurs when the iterakpa> Xx, 1 gets
trapped near a local potential minimum due to high energy barriers so that a proper
pling of the phase space within reasonable computing times is prevented. Typically,
also happens to HMC applications to biomolecules [34, 9]. Therefore, a novel apprc
combining HMC with the reweighting technique [10, 11] has been developed [12]. T
HMC variant generates the distribution of a mixed-canonical ensemble composed of
canonical ensembles at low and high temperature. Its analysis shows an efficient san
of the canonical distribution at the low temperature, whereas the high temperature coi
nent facilitates crossing of the crucial energy barriers. We will call this variant “adapt
temperature HMC” (ATHMC) in the following. The sampling positiogs generated by
high temperature update steps have tadweightedin order to guarantee overall con-
vergence to the canonical position distribution to the low temperature. Moreover, we f
to supply additional trajectories in order to guarantee that the initial momenta of the
of trajectories starting in one of the sampling positgynare weighted according to the
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correct low temperature. For details of the ATHMC construction, the reader is referre
our article [12].

The necessity of introducing generalizations of HMC is caused bgtisgence of al-
most invariant setdf there are almost invariant sets, deno®&ndC, with small tran-
sition probability w(I'(B), I'(C), ), then, both, the Markov chain (16) associated witl
the transition operator and the original HMC Markov chain need a huge number of ite
tions in order to produce sufficiently many of the rare transitions betvileandC. This
problem is circumvented by introducing the ATHMC chain which facilitates such tran
tions but has to be reweighted in order to yield samplings of the original canonical dis
bution.

The reader might also notice that there are other Monte Carlo Markov chain techni
which allow us to enforce barrier crossing (for example, the multicanonical algorithm |2
simulated tempering [36], J-walking [37], the fluctuating potential method [38], and otl
novel approaches [11]).

4.3. Essential Degrees of Freedom

Typical biomolecular systems contain hundreds or thousands of atoms. As a consequ
any direct spatial discretization of the transition operdtasuffers from the curse of di-
mension, since the number of discretization boxes grows exponentially with the size o
molecular system under consideration. Our strategy to circumvent the curse of dimer
is based on chemical observation. In the chemical literature conformations of biomolec
are mostly described in terms of fewgsential degrees of freedom the subspace of es-
sential degrees of freedom anharmonic motion occurs that comprises most of the posit
fluctuation, while in the remaining degrees of freedom the motion has a narrow Gaus
distribution and can be considered as “physically constrained.” We may determine es
tial degrees of freedom either in the coordinate space according to Amiade{13] or
in the space of internal degrees of freedom, e.g., torsion angles, by statistical analy:
circular data [39, 40]. Both procedures result in a tremendous reduction of dimension
Subsection 5.2).

After partitioning the chosen essential degrees of freedom resulting in discretization b
Bi, ..., Bn we assemble the transition matfxand solve the corresponding eigenvalu
problem. Since we only need the Perron cluster of the largest eigenvalues-adamwe
apply subspace oriented iterative techniques (see, e.g., [41, 42, Sect. 4.1]) to solv
eigenvalue problem. It is important that the convergence rate only depends on the spi
gap between the Perron cluster and the remaining part of the spectrum (see Subsectic
and isindependent of the size of the transition madix thus of the number of discretization
boxes. Therefore, neither the HMC sampling techniques nor the solution of the eigenv
problem do scale exponentially with the size of the molecule.

5. NUMERICAL EXPERIMENTS

In this section, the performance of the above derived algorithm in application
n-pentane and to the triribonucleotide adenyld&cytidylyl(3'-5)cytidin is presented.
The application to n-pentane allow us to follow closely the single steps of the algoritl
while the case of the ribonucleotide exemplifies the performance of the algorithm w
applied to biologically relevant systems.
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FIG. 2. Different conformations of n-pentane. From the left to the right, trans-trans, trans-gauche, gau
gauche orientations.

5.1. Application to n-Pentane

Figure 2 illustrates the chemically observed conformations of the n-pentane mole
CH3(CH;)3CHs.

For the n-pentane Hamiltonian, we use the united atom model (cf. Fig. 3) with
typical bond length and bond angle potentials, and a Lennard-Jones potential mode
the interaction between the first and the last of the united “atoms.” The dihedral ar
potentials are chosen according to [43], cf. Fig. 3. The form of the dihedral angle poter
shows three different minima corresponding to the trans and gauche orientations o
angles. The vibrational frequencies induced by these potentials are considerably sn
than those induced by the bond interactions. Consequently, in this simple example
dihedral angles can be selected as the essential degrees of freedom mentioned ab
Subsection 4.3.

Figures 4—7 illustrate the performance of the algorithm for the temper@ter&800 K.
The discretization boxes are constructed via uniform decomposition of the possible ve
[0, 2] x [0, 2] of the two dihedral angle&®; andw, in Nn=20x 20=400 boxes. The
HMC sampling has been realized using the Verlet time discretization with a subtrajec
length oft =160 fs. Figure 4 shows the resulting sequences of HMC steps in terms of
dihedral angles.

[$)]
o

— torsion [lé:)J/mOI]
o

\Y
o

-90 0 90 180

w [°]

N
o]
o

FIG. 3. United atom model of n-pentane with the two dihedral angleandw,. On the left, dihedral angle
potential due to [43]. The main minimum corresponds to the trans orientation of the angle; the two side mil
to thetgauche orientations.
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FIG. 4. HMC simulation of n-pentane f&f = 300 K. From top to bottom, the two dihedral angles versus th
step number and the convergence of the potential energy expedtdtion

We observe frequent transitions between the different trans and gauche orientatio
both angles. This observation illustrates that it is not sufficient to know the probability
be withina particular orientation of the angles but that the essential dynamical informa
is given by the probability tgtay withinit until a transition into another orientation occurs

Based on such a HMC sampling wit =200,000 steps, thgansition matrix Pis
assembled by the procedure explained in Subsection 4.2. Within this sampling length
HMC method produces a sufficient sampling of the canonical density (see the equilibre
diagram on bottom of Fig. 4). That s, in this case, we observe no serious trapping prob
and application of ATHMC is not absolutely necessary. When switching to lower temg
atures (as, e.g., for the simulation underlying Fig. 8), the rate of convergence of the H
sampling slows down significantly and an application of ATHMC allows us to decres
sampling lengths for more than an order of magnitude (cf. [12]).

From Subsection 4.1 we know that the discrete invariant desiti«))x=1....n iS given
by the left eigenvector oP for the largest eigenvalue, = 1. The result is given in Fig. 5.
As expected, the invariant density shows distinct local maxima at the minima of the dihe
angle potentials.

5.1.1. Conformations

Following [2], the chemical conformations are analyzed via the right eigenvectors ¢
responding to an eigenvalue cluster ngat 1. A presentation of the derivation of the
algorithmic procedure would be beyond the scope of the present paper. We herein only
a sketch of the construction principle: In a first step, determine the eigenvalue cluster
A =1, which is separated from the remaining part of the spectrum by a significant spe
gap—in our case, these are the seven largest eigenvalues. Figure 6 shows a schema
of the corresponding right eigenvectors. We observe that we may decompose the discr
tion domain into disjoint regions by distinguishing between different positive, negati
and almost zero values of these eigenvectors. The details of the algorithmic realizatio
nontrivial, because it has to include an iterative procedure to decide what is “almost z¢
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0.1

discr. o, discr. o,

FIG.5. Discrete canonical distribution for n-pentane versus the indices of the discretization boxes of the
dihedral angles; andw,. 7 =300 K.

By analyzing the eigenvectors as illustrated, the algorithm from [2] identifies the cont
mational subsets shown in Fig. 7. As can be seen the automatic procedure in fact suppli
chemically expected information. After identifying the conformations, the correspond
probabilities to stay within each conformational subset can be computed due to Eq. |
The resulting valuep are also given in Fig. 7. We observe that the trans/trans conformat
is slightly more stable than the different trans/gauche and gauche/trans conformation
expected, the two gauche/gauche conformations are clearly less stable.

A, =0.98593 %, =0.98404 A, =0.98205
20

o
)
1

|
TTITTTT T
5 10 15 20

T
5 10 15 20

A, =0.97506 »,=0.93796

20

5 10 15 20 5 10 15 20

FIG. 6. Schematic plot of the right eigenvectors corresponding to the seven largest eigeayaluesi,; of
P versus the indices (1. ., 20) x (1, ..., 20) of the discretization boxes of the two dihedral anglegndw,.
Positive entries of the eigenvectors are indicated by black boxes, negative entries by gray boxes, and white
indicate almost zero entrie®.= 300 K.
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p = 0.97634 p = 0.98226 p = 0.97909 p = 0.97675
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FIG. 7. Almost invariant sets fof =300 K. The number$ on top of each figure are the probabilities to
stay within the corresponding subsets during the time sp&nom the left hand side on top to the right hand side
below we see the-gauche/trans, transfauche—gauchef-gauche, trans/trans, trargfauche+gauche/trans,
and+gauchet-gauche conformations (cf. Fig. 2).

As already emphasized above, the probabilitietagy withinshouldnotbe confused with
the probability tabe withina conformation, which is already given by the invariant densi
(cf. Fig. 5). In the table below, these two different probabilities are listed for each of
conformational subsets shown in Figs7g and t denote th&gauche and trans orientations):

Conformation —g/t t+g9 —9/-g t/t t/—g +g/t 4049

Prob. to be within 0.120 0.132 0.012 0.473 0.117 0.132 0.01
Prob. to stay within ~ 0.976  0.980 0.910 0.982 0.979 0.970 0.86

The slight differences between the probabilities to be withintigét and tA-g orienta-
tions may be used as an error indicator for the sampling. The probability to be within
+gauchef-gauche or-gauchetgauche orientations is less than 0.0005, showing that th
are irrelevant in this context.

5.1.2. Parameter Sensitivity

The results presented herein surely depend on a number of crucial parameters, so
them being of a physical nature (e.g., the temperafUreothers being introduced by the
algorithm (e.qg., the numbarof discretization boxes or the length of the HMC sampling).
We want to emphasize that the algorithm as it stands now is far from being perfectly tu
We thus can only present some experiences from numerical experiments for the n-pe
molecule and some other comparably small systems.

At first, let us consider the dependence of the conformations on the temperatur:
Varying the temperature betwe@n= 200 K andZ = 600 K we do not observe an influence
on the identified conformations. But, as to be expected, the probabilities to stay within tl
conformations are decreasing with increasingrigure 8 shows the corresponding decreas
of the nine largest eigenvalues of the transition matrieesP (7). It also illustrates that in
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FIG. 8. Temperature dependence of the nine largest eigenvalues of the transitionPaatrix

all casestested sofarthere exists a disspettral gagpetween the seven largest eigenvalue
used to identify the conformational subsets and the remaining part of the spectrum.
Obviously, the quality of the results depends crucially on the lemgtbf the HMC
sampling. If, for fixed temperature and spatial discretization, the number of stepsis decre
from M =200,000 down tdM = 50,000, we observe that the approximation quality of th
invariant density slowly deteriorates. This corresponds to a slowly increasing distortiol
the approximate “conformational” subsets. Thus, it is of primary importance to check
quality of the Monte Carlo sampling via appropriate convergence indicators [44].

5.1.3. Dependence on Discretization

Finally, let us illustrate an extremely important property of the presented algorithm,
stability of the results even when significantly coarser discretizations are used. For
n-pentane molecule we indeed can reduce the decomposition of the discretization do
from n=20x 20 boxes t = 3 x 3 boxes but the algorithm still identifies approximately
the same conformations and nearly the same probabilities (both to stay and to be wit
The reason for thisis illustrated in Fig. 9: since the HMC procedure samples the phase ¢
independent of the discretization, the seven largest eigenvalues of the transitionPnat!
are only insignificantly perturbed when the number of discretization boxes is reduced.

5.2. Application to a Ribonucleotide

In this section, the performance of the algorithm in application to the triribonucleot:
adenylyl3-5)cytidylyl (3-5)cytidin at temperatur§ =295 K is presented. The trinu-
cleotide molecule is modelled by means of the potential and masses of the extended
representation of Gromos [45]. Solvent effects are neglected.

The numerical results to be presented are based on an ATHMC sampling of the ca
ical density using subtrajectories of length=80 fs computed by means of the Verlet
discretization with stepsizat =2 fs. For these parameters, HMC simulations typicall
require thousands of iterations only to leave the neighborhood of the initial configurat
Application of ATHMC (with adaptive temperatures betweer- 295 K and7 + = 400 K)



HMC-BASED APPROACH TO CONFORMATIONAL DYNAMICS 165

19—
0.5
(<.¥
0.
-0.5¢1 _ _ _ _
2 4 6 8 10
index k

FIG. 9. Sensitivity of theabsolutelylargest eigenvalues ¢ for different uniform discretizations of [@r]?
with n =3 x 3=9 boxes (dashed line),= 9 x 9= 81 (dashed-dotted), amd= 20 x 20=400 boxes (dense line).
Note that the seven largest eigenvalues—only these are used for the identification of the conformations—r
almost unperturbed if the grid gets coarser.

circumvents the problem: one observes frequent transitions in the crucial torsion angl
the molecule (for details see [12]). The ATHMC simulation was terminated by the assi
ated convergence indicator [44] affdr= 32,000 steps, resulting in the sampling sequent
di, ..., 0m, and corresponding reweighting factors. The sampling process was compl
by the “transition sampling” by computing four subtrajectord®sqy, gx) for each of the
sampling positionsj with initial momentapy ; randomly chosen fror®.

Based on this ATHMC sampling, the essential degrees of freedom of the molecule \
determined by applying an identification procedure based on statistical analysis of ci
lar data [39, 40] similar to that proposed by Amaeeial. [13] but using torsion angles
instead of position information [46]. In this procedgeneralized angle coordinatese
introduced (linear combinations of the torsion angles defined by eigenvectors of the circ
covariance matrix that measures correlations between the torsion angles). The distrib
of the sampling sequencex] with respect to these generalized coordinates has the formr
some narrow Gaussian for most of the coordinates (indicating that they can be consic
“physically constrained”), while it is non-Gaussian for a small number of coordinates o
(cf. Fig. 10). In our case, only four degrees of freedom showed such non-Gaussian dist
tion. The partitioning of the corresponding four-dimensional essential configuration sg
was chosen such that these distributions are decomposed into their single Gaussia
parts (cf. Fig. 10). This process generated 36 discretization boxes.

For this partitioning, the transition matriR (size 36x 36) was assembled by counting
the transitions between the discretization boxes based on th&24)00= 128,000 sub-
trajectories of the transition sampling and weighting each transition due to its reweigh
factor. Since every box had been hit by sufficiently many events the statistical samg
was accepted to be reliable. The computation of the dominant eigenvaltegielded a
Perron cluster of 8 eigenvalues with a significant gap to the remaining part of the spect

k 1 2 3 4 5 6 7 8 9

Ax 1.000 0.999 0.989 0974 0.963 0.946 0.933 0.904 0.805.
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FIG. 10. Distribution of the sampling sequencg, ..., gu with respect to two of the generalized angle

coordinates introduced in the text. Left, distribution for an essential degree of freedom (possible decompo:
illustrated by dashed lines). Right, Gaussian distribution for some nearly “physically constrained” degre
freedom.

Finally, the conformational subsets were computed based on the corresponding 8
eigenvectors oP via the identification algorithm presented in [2]. The results turned out
be rather insensitive to further refinements of the partitioning. The corresponding prob:s
ities to stay within and to be within these conformational subsets are listed in the follow
table:

Conformation 1 2 3 4 5 6 7 8

Prob. to be within 0.320 0.285 0.116 0.107 0.095 0.038 0.028 0.0
Prob. to stay within  0.991 0.981 0.961 0.986 0.962 0.949 0.888 0.9

The resulting dynamical conformations are closely related to the conformations resu
from standard geometric identification algorithms, but the available dynamical informat
allows us to gain further insight in the transitions between the conformational subsets
a detailed comparison, see [46]).
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